Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structure and evolution of the plant cation diffusion facilitator family of ion transporters.

Identifieur interne : 002D02 ( Main/Exploration ); précédent : 002D01; suivant : 002D03

Structure and evolution of the plant cation diffusion facilitator family of ion transporters.

Auteurs : Jeffery L. Gustin [États-Unis] ; Michael J. Zanis ; David E. Salt

Source :

RBID : pubmed:21435223

Descripteurs français

English descriptors

Abstract

BACKGROUND

Members of the cation diffusion facilitator (CDF) family are integral membrane divalent cation transporters that transport metal ions out of the cytoplasm either into the extracellular space or into internal compartments such as the vacuole. The spectrum of cations known to be transported by proteins of the CDF family include Zn, Fe, Co, Cd, and Mn. Members of this family have been identified in prokaryotes, eukaryotes, and archaea, and in sequenced plant genomes. CDF families range in size from nine members in Selaginella moellendorffii to 19 members in Populus trichocarpa. Phylogenetic analysis suggests that the CDF family has expanded within plants, but a definitive plant CDF family phylogeny has not been constructed.

RESULTS

Representative CDF members were annotated from diverse genomes across the Viridiplantae and Rhodophyta lineages and used to identify phylogenetic relationships within the CDF family. Bayesian phylogenetic analysis of CDF amino acid sequence data supports organizing land plant CDF family sequences into 7 groups. The origin of the 7 groups predates the emergence of land plants. Among these, 5 of the 7 groups are likely to have originated at the base of the tree of life, and 2 of 7 groups appear to be derived from a duplication event prior to or coincident with land plant evolution. Within land plants, local expansion continues within select groups, while several groups are strictly maintained as one gene copy per genome.

CONCLUSIONS

Defining the CDF gene family phylogeny contributes to our understanding of this family in several ways. First, when embarking upon functional studies of the members, defining primary groups improves the predictive power of functional assignment of orthologous/paralogous genes and aids in hypothesis generation. Second, defining groups will allow a group-specific sequence motif to be generated that will help define future CDF family sequences and aid in functional motif identification, which currently is lacking for this family in plants. Third, the plant-specific expansion resulting in Groups 8 and 9 evolved coincident to the early primary radiation of plants onto land, suggesting these families may have been important for early land colonization.


DOI: 10.1186/1471-2148-11-76
PubMed: 21435223
PubMed Central: PMC3073911


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structure and evolution of the plant cation diffusion facilitator family of ion transporters.</title>
<author>
<name sortKey="Gustin, Jeffery L" sort="Gustin, Jeffery L" uniqKey="Gustin J" first="Jeffery L" last="Gustin">Jeffery L. Gustin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture and Landscape Architecture, Purdue University, 625 Agricultural Mall Drive, West Lafayette, IN 47907-2010, USA. jgustin@ufl.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture and Landscape Architecture, Purdue University, 625 Agricultural Mall Drive, West Lafayette, IN 47907-2010</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zanis, Michael J" sort="Zanis, Michael J" uniqKey="Zanis M" first="Michael J" last="Zanis">Michael J. Zanis</name>
</author>
<author>
<name sortKey="Salt, David E" sort="Salt, David E" uniqKey="Salt D" first="David E" last="Salt">David E. Salt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21435223</idno>
<idno type="pmid">21435223</idno>
<idno type="doi">10.1186/1471-2148-11-76</idno>
<idno type="pmc">PMC3073911</idno>
<idno type="wicri:Area/Main/Corpus">002E74</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E74</idno>
<idno type="wicri:Area/Main/Curation">002E74</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E74</idno>
<idno type="wicri:Area/Main/Exploration">002E74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structure and evolution of the plant cation diffusion facilitator family of ion transporters.</title>
<author>
<name sortKey="Gustin, Jeffery L" sort="Gustin, Jeffery L" uniqKey="Gustin J" first="Jeffery L" last="Gustin">Jeffery L. Gustin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Horticulture and Landscape Architecture, Purdue University, 625 Agricultural Mall Drive, West Lafayette, IN 47907-2010, USA. jgustin@ufl.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Horticulture and Landscape Architecture, Purdue University, 625 Agricultural Mall Drive, West Lafayette, IN 47907-2010</wicri:regionArea>
<placeName>
<region type="state">Indiana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zanis, Michael J" sort="Zanis, Michael J" uniqKey="Zanis M" first="Michael J" last="Zanis">Michael J. Zanis</name>
</author>
<author>
<name sortKey="Salt, David E" sort="Salt, David E" uniqKey="Salt D" first="David E" last="Salt">David E. Salt</name>
</author>
</analytic>
<series>
<title level="j">BMC evolutionary biology</title>
<idno type="eISSN">1471-2148</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cation Transport Proteins (chemistry)</term>
<term>Cation Transport Proteins (genetics)</term>
<term>Cation Transport Proteins (metabolism)</term>
<term>Diffusion (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants (chemistry)</term>
<term>Plants (genetics)</term>
<term>Plants (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Diffusion (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Plantes (composition chimique)</term>
<term>Plantes (génétique)</term>
<term>Plantes (métabolisme)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Transporteurs de cations (composition chimique)</term>
<term>Transporteurs de cations (génétique)</term>
<term>Transporteurs de cations (métabolisme)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cation Transport Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cation Transport Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cation Transport Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Plantes</term>
<term>Protéines végétales</term>
<term>Transporteurs de cations</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Plantes</term>
<term>Protéines végétales</term>
<term>Transporteurs de cations</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Plantes</term>
<term>Protéines végétales</term>
<term>Transporteurs de cations</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Diffusion</term>
<term>Evolution, Molecular</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Diffusion</term>
<term>Phylogenèse</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Members of the cation diffusion facilitator (CDF) family are integral membrane divalent cation transporters that transport metal ions out of the cytoplasm either into the extracellular space or into internal compartments such as the vacuole. The spectrum of cations known to be transported by proteins of the CDF family include Zn, Fe, Co, Cd, and Mn. Members of this family have been identified in prokaryotes, eukaryotes, and archaea, and in sequenced plant genomes. CDF families range in size from nine members in Selaginella moellendorffii to 19 members in Populus trichocarpa. Phylogenetic analysis suggests that the CDF family has expanded within plants, but a definitive plant CDF family phylogeny has not been constructed.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Representative CDF members were annotated from diverse genomes across the Viridiplantae and Rhodophyta lineages and used to identify phylogenetic relationships within the CDF family. Bayesian phylogenetic analysis of CDF amino acid sequence data supports organizing land plant CDF family sequences into 7 groups. The origin of the 7 groups predates the emergence of land plants. Among these, 5 of the 7 groups are likely to have originated at the base of the tree of life, and 2 of 7 groups appear to be derived from a duplication event prior to or coincident with land plant evolution. Within land plants, local expansion continues within select groups, while several groups are strictly maintained as one gene copy per genome.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Defining the CDF gene family phylogeny contributes to our understanding of this family in several ways. First, when embarking upon functional studies of the members, defining primary groups improves the predictive power of functional assignment of orthologous/paralogous genes and aids in hypothesis generation. Second, defining groups will allow a group-specific sequence motif to be generated that will help define future CDF family sequences and aid in functional motif identification, which currently is lacking for this family in plants. Third, the plant-specific expansion resulting in Groups 8 and 9 evolved coincident to the early primary radiation of plants onto land, suggesting these families may have been important for early land colonization.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21435223</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2148</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>BMC evolutionary biology</Title>
<ISOAbbreviation>BMC Evol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Structure and evolution of the plant cation diffusion facilitator family of ion transporters.</ArticleTitle>
<Pagination>
<MedlinePgn>76</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2148-11-76</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Members of the cation diffusion facilitator (CDF) family are integral membrane divalent cation transporters that transport metal ions out of the cytoplasm either into the extracellular space or into internal compartments such as the vacuole. The spectrum of cations known to be transported by proteins of the CDF family include Zn, Fe, Co, Cd, and Mn. Members of this family have been identified in prokaryotes, eukaryotes, and archaea, and in sequenced plant genomes. CDF families range in size from nine members in Selaginella moellendorffii to 19 members in Populus trichocarpa. Phylogenetic analysis suggests that the CDF family has expanded within plants, but a definitive plant CDF family phylogeny has not been constructed.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Representative CDF members were annotated from diverse genomes across the Viridiplantae and Rhodophyta lineages and used to identify phylogenetic relationships within the CDF family. Bayesian phylogenetic analysis of CDF amino acid sequence data supports organizing land plant CDF family sequences into 7 groups. The origin of the 7 groups predates the emergence of land plants. Among these, 5 of the 7 groups are likely to have originated at the base of the tree of life, and 2 of 7 groups appear to be derived from a duplication event prior to or coincident with land plant evolution. Within land plants, local expansion continues within select groups, while several groups are strictly maintained as one gene copy per genome.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Defining the CDF gene family phylogeny contributes to our understanding of this family in several ways. First, when embarking upon functional studies of the members, defining primary groups improves the predictive power of functional assignment of orthologous/paralogous genes and aids in hypothesis generation. Second, defining groups will allow a group-specific sequence motif to be generated that will help define future CDF family sequences and aid in functional motif identification, which currently is lacking for this family in plants. Third, the plant-specific expansion resulting in Groups 8 and 9 evolved coincident to the early primary radiation of plants onto land, suggesting these families may have been important for early land colonization.</AbstractText>
<CopyrightInformation>© 2011 Gustin et al; licensee BioMed Central Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gustin</LastName>
<ForeName>Jeffery L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Department of Horticulture and Landscape Architecture, Purdue University, 625 Agricultural Mall Drive, West Lafayette, IN 47907-2010, USA. jgustin@ufl.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zanis</LastName>
<ForeName>Michael J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Salt</LastName>
<ForeName>David E</ForeName>
<Initials>DE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Evol Biol</MedlineTA>
<NlmUniqueID>100966975</NlmUniqueID>
<ISSNLinking>1471-2148</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D027682">Cation Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D027682" MajorTopicYN="N">Cation Transport Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004058" MajorTopicYN="N">Diffusion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>09</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>03</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21435223</ArticleId>
<ArticleId IdType="pii">1471-2148-11-76</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2148-11-76</ArticleId>
<ArticleId IdType="pmc">PMC3073911</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 1998 Mar;8(3):163-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9521918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Nov;3(11):838-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12415314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Mar 27;255(5052):1697-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17749424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Aug 1;579(19):4165-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16038907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2005 Jun;32(6):215-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15889311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11647-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16868079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Feb 1;409(6820):618-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11214320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2001 Sep-Dec;14(3-4):251-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11831460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1164-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19223592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 12;318(5848):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):92-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Aug 12;19(12):1572-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1706-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Feb;53(4):661-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18269575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2004 Aug 2;166(3):325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15277543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 15;104(20):8532-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17494768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 1997 Mar 15;156(2):99-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9075641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Dec;17(12):1885-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11110905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 5;296(5565):79-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11935017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2010 Nov;67(22):3763-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20623158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Jul 15;29(14):2994-3005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11452024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007;7:32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17577406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pflugers Arch. 2004 Feb;447(5):744-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14959-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17003129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Aug;39(3):425-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15255871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jan 29;457(7229):551-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19189423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Dec 14;294(5550):2310-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jul;39(2):237-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15225288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Dec;45(12):1749-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17448255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 1;104(18):7705-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17460045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Dec;15(12):2911-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14630973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Apr 8;428(6983):653-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15071595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2004 May;21(5):809-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2010 Aug;97(8):1296-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21616882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2008 Jul;9(4):286-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18372315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Aug;86(16):6201-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2762323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Mar;119(3):1047-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Aug;126(4):1646-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Apr;8(2):122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 4;319(5859):64-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Feb;137(2):428-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15710683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):600-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Appl Biochem. 1996 Feb;23 ( Pt 1):3-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8867889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Jun;46(5):861-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 May 25;581(12):2263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17462635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2002 May;2(5):567-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12015965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Jan 1;23(1):127-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17050570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 May;15(5):1131-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12724539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jul;51(2):198-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17559518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Indiana</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Salt, David E" sort="Salt, David E" uniqKey="Salt D" first="David E" last="Salt">David E. Salt</name>
<name sortKey="Zanis, Michael J" sort="Zanis, Michael J" uniqKey="Zanis M" first="Michael J" last="Zanis">Michael J. Zanis</name>
</noCountry>
<country name="États-Unis">
<region name="Indiana">
<name sortKey="Gustin, Jeffery L" sort="Gustin, Jeffery L" uniqKey="Gustin J" first="Jeffery L" last="Gustin">Jeffery L. Gustin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21435223
   |texte=   Structure and evolution of the plant cation diffusion facilitator family of ion transporters.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21435223" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020